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Read more The full version of this paper is available at
https://arxiv.org/abs/1905.09684, which in-
cludes the complete formulation and theoretical analysis of
the proposed algorithm and more experimental results.

1. Introduction
We are interested in learning a generative model from

multiple image data collections that are each i) owned sep-
arately and privately by different clients and ii) drawn from
non-identically distributions that comprise different classes.
Examples of such multi-client and non-iid data include per-
sonal life-logging videos [3] and medical data [6], which
are all owned independently and privately by multiple in-
dividuals or institutions and characterized differently due
to geographical conditions or personal preferences. On the
one hand, learning from such data resources distributed all
over the world would improve the diversity of images the
trained model can generate and ultimately benefit various
applications such as anomaly detection and image-to-image
translation. On the other hand, direct access to a collection
of data captured exclusively by a single client creates the
risk of private information leak, e.g., a living area that could
be inferred from a collection of life-logging videos taken by
a single person. This dilemma between data utility and pri-
vacy will make it hard to aggregate all the client data in a
central server, necessitating decentralized approaches.

Nonetheless, much work on decentralized learning has
focused mainly on the supervised setting, such as Federated
Learning that has been extensively studied [1]. It is hard to
determine how such supervised approaches can be adopted
for learning generative models from decentralized non-iid
data. An exception proposed recently is decentralized learn-
ing of generative adversarial networks (GANs) [5], which
lets each client train an individual discriminator with their
own data while asking the central server to update a genera-
tor to fool those discriminators. While this approach allows
clients to decentralize their data in each storage, it restricts
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Figure 1. Decentralized learning of GANs.

all client data to be drawn independently from the identi-
cal distribution, and has no theoretical guarantee on what
distribution will be learned otherwise.

2. Proposed Approach
Given this background, we develop a decentralized ap-

proach tailored for learning GANs from multi-client non-iid
data. As shown in Figure 1, suppose that N clients indepen-
dently train an individual discriminator with their own pri-
vate data drawn from non-identical distributions with differ-
ent classes, hereafter p1(x), . . . , pN (x). By training a gen-
erator stored in the central server to fool those discrimina-
tors, our approach aims at learning a distribution that com-
prises all the classes input data can belong to, more specifi-
cally, pmax(x) =

1
Z maxi pi(x).

Forgiver First Aggregation The key technical contribu-
tion is in a strategy to coordinate multiple discriminators to
inform a generator of multi-client non-iid data. Intuitively,
when the discriminators are trained from non-identical data
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Table 1. FID scores.
MNIST CIFAR10

Non-OVL Mod-OVL Non-OVL Mod-OVL

MD-GAN [5] 38.42 34.33 56.64 50.30
GMAN* [4] 67.69 58.65 50.50 41.83

F2A (Ours) 18.96 14.53 38.92 41.01

distributions, they will judge each generated sample differ-
ently. The proposed approach, which we refer to as For-
giver First Aggregation (F2A), i) aggregates such diverse
judgments while emphasizing more ‘forgiving’ ones who
deemed the generated sample as more real and closer to
what they have and ii) updates the generator against the ag-
gregated judgments. This will allow the generator to learn
rare classes observed only by a small fraction of the dis-
criminators as well as common ones shared by many clients.
The aggregation of multi-discriminator judgments is im-
plemented with a regularized weighted averaging function,
where the averaging weights can also be updated with the
generator end-to-end to better capture the non-iidness of
given client data.

Learning Protocol As shown in Figure 1, the decen-
tralized learning with F2A requires the central server and
clients to exchange mini-batches of generated samples and
their loss gradients. Another advantage of using F2A is that
the computations of loss gradients, in which we need to ag-
gregate judgments of multiple discriminators, can easily be
combined with off-the-shelf secure-sum protocols such as
[2]. This allows each discriminator to be provably secure
under certain settings against malicious parties who try to
intercept the training process and leak the private informa-
tion from the judgments.

3. Experiments
Datasets We empirically evaluated our approach with im-
age generation tasks on MNIST and CIFAR10. Each dataset
was split into five subsets (i.e., we considered five clients)
with the following two conditions which split images into
five such that p1(x), . . . , p5(x) respectively comprised the
images of classes {0, 1},{2, 3},{4, 5},{6, 7},{8, 9} (non-
overlapping; Non-OVL), and {0, 1, 2, 3},{2, 3, 4, 5},
{4, 5, 6, 7}, {6, 7, 8, 9}, {8, 9, 0, 1} (moderately-
overlapping; Mod-OVL).

Implementation We implemented a variant of LS-
GANs [7] based on a DCGAN-based architecture where
client-wise discriminators had spectral normalization [8] in-
stead of batch normalization.

Baselines, Evaluation Metrics, and Results Our decen-
tralized learning with F2A consists of multiple discrimi-
nators to train a single generator. We therefore adopted
MD-GAN [5] and GMAN [4] as a baseline method, which
were both GANs with multiple discriminators but trained
with completely different aggregation strategies. Fréchet
Inception Distance (FID) was used as an evaluation met-
ric. Importantly, we found that the choices of hyperparam-
eters such as mini-batch size and the number of iterations
affected FID greatly and differently for each method. In-
stead of picking out one specific hyperparameter, we tested
each method with combinations of several mini-batch sizes
and numbers of iterations and report the median FID scores.
As shown in Table 1, we confirmed that F2A outperformed
the other baselines.
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