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Introduction: As we witness the wide spread adoption of
representation learning systems, it is imperative to consider
the problem of unintended leakage of information from
such systems. Adversarial Representation Learning (ARL)
is a promising approach for learning image representations
that minimizes such leakage of user information. These
approaches couple together (i) an adversarial network that
seeks to classify and extract sensitive information from a
given representation, and (ii) an embedding network that
is tasked with extracting a compact representation of data
while preventing the adversarial network from succeeding
at leaking sensitive information. To achieve their respec-
tive goals, the adversary is optimized to maximize the like-
lihood of the sensitive information, while the encoder is op-
timized to minimize the same likelihood i.e., adversary’s
likelihood of the sensitive information, thereby leading to a
zero-sum game. This approach referred to as ML-ARL has
been leveraged for learning censored [2], fair [3], or invari-
ant [4] representations of data.

The zero-sum game formulation of optimizing the likeli-
hood, however, is practically sub-optimal from the perspec-
tive of preventing information leakage. Moreover, the po-
tential of this formulation to prevent information leakage is
predicated upon: (i) the existence of an equilibrium, and
(ii) the ability of practical optimization procedures to con-
verge to such an equilibrium. when the optimization does
not reach the equilibrium, a probability distribution with the
minimum likelihood is the distribution that is most certain
with the potential to leak the most amount of information.

Building on the observations above, we propose a frame-
work, dubbed Maximum Entropy Adversarial Representa-
tion Learning (MaxEnt-ARL), which optimizes an image
representation with two major objectives, (i) maximally re-
tain information pertinent to a given target attribute, and
(ii) minimize information leakage about a given sensitive
attribute. We pose the learning problem in an adversarial
setting as a non-zero sum three player game between an
encoder, a predictor and a discriminator (proxy adversary)
where the encoder tries to maximize the entropy of the dis-
criminator on the sensitive attribute and maximizes the like-
lihood of the predictor on the target attribute.
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Figure 1: Adversarial Representation Learning: We con-
sider the problem of learning an embedding function E that
maps a high-dimensional image to a low-dimensional rep-
resentation z ∈ Rd while satisfying two competing goals:
retain as much image information necessary to accurately
predict a target attribute while simultaneously minimizing
information leakage about a sensitive attribute by an un-
known adversary A. The learning problem is formulated
as a game between {E, T} and a proxy adversary D.

Main Contribution: In the MaxEnt-ARL formulation the
goal of the encoder is to maximize the likelihood of the
target attribute, as measured by the target predictor, while
maximizing the uncertainty in the sensitive attribute, as
measured by the entropy of the discriminator’s predic-
tion. The encoder is modeled as a deterministic function,
z = E(x;θE), the target predictor models the conditional
distribution p(t|x) via qT (t|z;θT ) and the discriminator
models the conditional distribution p(s|x) via qD(s|z;θD),
where p(t|x) and p(s|x) are the ground truth labels for a
given target and sensitive labels t and s, respectively. For-
mally, we define the MaxEnt-ARL optimization problem as
a three player non-zero sum game:

min
θD

V1(θE ,θD)

min
θE ,θT

V2(θE ,θT ) + αV3(θE ,θD)
(1)

where α allows us to trade-off between the two competing
objectives for the encoder and,

V1(θE ,θD) = KL (p (s|x) ‖qD (s|E(x;θE);θD))

V2(θE ,θT ) = KL (p (t|x) ‖qT (t|E(x;θE);θT ))

V3(θE ,θD) = KL (qD (s|E(x;θE) ;θD)‖U)



where U is the uniform distribution.
Experimental Results: We evaluate MaxEnt-ARL and
compare to ML-ARL on two tasks, fair classification on the
UCI and on the CIFAR-100 datasets.
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(a) Target Attribute: Credit
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(b) Sensitive Attribute: Gender
Adult
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(c) Target Attribute: Income
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(d) Sensitive Attribute: Gender

Figure 2: Representation Learning for Fair Classification

Fair Classification: We consider the setting of fair classi-
fication on two datasets from the UCI ML-repository [1],
(a) The German credit dataset with 20 attributes for 1000
instances with target label being classifying bank account
holders with good or bad credit and gender being the sensi-
tive attribute, (b) The Adult income dataset has 45,222 in-
stances with 14 attributes. The target is a binary label of an-
nual income more or less than $50, 000, while gender is the
sensitive attribute. For both ML-ARL and MaxEnt-ARL,
the encoder is a NN with one hidden layer, discriminator
is a NN with 2 hidden layers, and target predictor is lin-
ear logistic regression. Following ML-ARL [4] we choose
64 units in each hidden layer. We compare both ARL
formulations with state-of-the-art baselines LFR (Learning
Fair Representations), VAE (Variational Auto-Encoder) and
VFAE (Variational Fair Auto-Encoder). For MaxEnt-ARL,
after learning the embedding, we again learn an adversary
to extract the sensitive attribute.

Figure 2 show the results for the German and Adult
datasets, for both the target and sensitive attributes. For Ger-
man data, MaxEnt-ARL’s prediction accuracy is 86.33%
which is close to that of the original data (87%). Other
models such as, LFR, VAE, VFAE and ML-ARL have tar-
get accuracies of 72.3%, 72.5%, 72.7% and 74.4% respec-
tively. On the other hand, for the sensitive attribute, the
MaxEnt-ARL adversary’s accuracy is 72.7%. Other models
reveal much more information with adversary accuracies of
80%, 80.5%, 79.5%, 79.7% and 80.2% for the original data,
LFR, VAE, VFAE and ML-ARL, respectively. For the adult
income dataset, the target accuracy for original data, ML-
ARL and MaxEnt-ARL is 85%, 84.4% and 84.6%, respec-
tively, while the adversary’s performance on the sensitive
attribute is 67.7% and 65.5% for ML-ARL and MaxEnt-

(a) (b)

Figure 3: CIFAR-100: Trade-off fronts for two different
ARL approaches, ML-ARL and MaxEnt-ARL, in compar-
ison to standard no privacy representation learning. In (a)
the ideal desired solution is the bottom right corner, while in
(b) it is the top right corner. HV in the legend corresponds
to normalized hyper-volume.

ARL, respectively.
CIFAR-100: We formulate a new privacy problem on the
CIFAR-100 dataset. The dataset consists of 100 classes and
are grouped into 20 superclasses. Each image has a “fine”
(the class to which it belongs) and a “coarse” (the super-
class to which it belongs) label. We treat the “coarse” (su-
perclass) and “fine” (class) labels as the target and sensitive
attribute, respectively. So the encoder is tasked to learn fea-
tures of the super-classes while not revealing the informa-
tion of the underlying classes. We adopt ResNet-18 as the
encoder while the predictor, discriminator and adversary are
all 2-layered fully connected networks. We report the trade-
off achieved between predictor and adversary along with
the corresponding normalized hyper-volume (HV) in Fig.
3. Our results indicate that, representation learning without
privacy considerations leaks significant amount of informa-
tion. MaxEnt-ARL is able to significantly outperform ML-
ARL on this task, achieving trade-off solutions that are far
better, both in terms of adversary accuracy and entropy of
adversary.
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