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1. Introduction

We study the relationship between adversarial ro-
bustness and the input data distribution. We focus on
the adversarial training method [1], arguably the most
popular defense method so far due to its simplicity, ef-
fectiveness and scalability. Our main contribution is
the finding that adversarial robustness is highly sensi-
tive to the input data distribution:

A semantically-lossless shift on the data distribution
could result in a drastically different robustness for
adversarially trained models.

Note that this is different from the transferability of
a fixed model that is trained on one data distribution
but tested on another distribution. Even retraining
the model on the new data distribution may give us a
completely different adversarial robustness on the same
new distribution. This is also in sharp contrast to the
clean accuracy of standard training, which, as we show
in later sections, is insensitive to such shifts. To our
best knowledge, our paper is the first work in the lit-
erature that demonstrates such sensitivity.

2. Robustness on Datasets Variants with
Different Input Distributions

In this section we carefully design a series of datasets
and experiments to further study its influence. One im-
portant property of our new datasets is that they have
different input data distributions P(z)’s while keep-
ing the true classification P(y|z) reasonably fixed, thus
these datasets are only different in a “semantic-lossless”
shift. We emphasize that different from preprocessing
steps or transfer learning, here we treat the shifted data
distribution as a new underlying distribution. We both
train the models and test the robust accuracies on the
same new distribution.

In general, MNIST has a more binary distribution of
pixels, while CIFAR10 has a more continuous spectrum
of pixel values. We apply different levels of “smooth-
ing” on MNIST to create more CIFAR-like datasets,

and different levels of “saturation” on CIFAR10 to cre-
ate more “binary” ones, as shown in Figure la and 1b.
Note that we would like to maintain the semantic in-
formation of the original data, which means that such
operations should be semantics-lossless.

To measure the difficulty of the classification task,
we perform standard neural network training and test
accuracies on clean data. To measure the difficulty to
achieve robustness, we perform /., projected gradient
descent (PGD) based adversarial training [1] and test
robust accuracies on adversarially perturbed data. To
understand whether low robust accuracy is due to low
clean accuracy or vulnerability of model, we also report
robustness w.r.t. predictions, where the attack is used
to perturb against the model’s clean prediction, instead
of the true label. PGD training on MNIST variants and
CIFARI0 variants all follows the settings in [1]. PGD
attacks on MNIST variants run with e = 0.3, step size
of 0.01 and 40 iterations, and runs with e = 8/255, step
size of 2/255 and 10 iterations on CIFAR10 variants.

2.1. Sensitivity to Data Transformations

Results on MNIST variants are presented in Fig-
ure 1d. The clean accuracy of standard training is
very stable across different MNIST variants. This in-
dicates that their classification tasks have similar dif-
ficulties, if the training has no robust considerations.
When performing PGD adversarial training, clean ac-
curacy drops only slightly. However, both robust ac-
curacy and robustness w.r.t. predictions drop signif-
icantly. This indicates that as smooth level goes up,
it is significantly harder to achieve robustness. Note
that for binarized MNIST with adversarial training,
the clean accuracy and the robust accuracy are almost
the same. Indicating that getting high robust accuracy
on binarized MNIST does not conflict with achieving
high clean accuracy.

CIFARI10 result tell a similar story, as reported in
Figure le. For standard training, the clean accuracy
maintains almost at the original level until saturation
level 16, despite that it is already perceptually very
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Figure 1: Variants of MNIST and CIFAR10 datasets (a, b, c¢), and Accuracy, Robust Accuracy and Robustness

w.r.t. Predictions on different data variants (c, d, e).

saturated. In contrast, PGD training has a different
trend. Before level 16, the robust accuracy significantly
increases from 43.2% until 79.7%, while the clean test
accuracy drops only in a comparatively small range,
from 85.4% to 80.0%. After level 16, PGD training
has almost the same clean accuracy and robust accu-
racy. However, robustness w.r.t. predictions still keeps
increasing, which again indicates the instability of the
robustness. On the other hand, if the saturation level
is smaller than 2, we get worse robust accuracy after
PGD training, e.g. at saturation level 1 the robust ac-
curacy is 33.0%. Simultaneously, the clean accuracy
maintains almost the same.

Note that after saturation level 64 the standard
training accuracies starts to drop significantly. This is
likely due to that high degree of saturation has caused
“information loss”. Models trained on highly saturated
CIFARI10 are quite robust and the gap between robust
accuracy and robustness w.r.t. predictions is due to
lower clean accuracy. In contrast, In MNIST variants,
the robustness w.r.t. predictions is always almost the
same as robust accuracy, indicating that drops in ro-
bust accuracy is due to adversarial vulnerability.

From these results, we can conclude that robust ac-
curacy under PGD training is much more sensitive than
clean accuracy under standard training to the differ-
ences in input data distribution. More importantly, a
semantically-lossless shift on the data transformation,
while not introducing any unexpected risk for the clean
accuracy of standard training, can lead to large vari-
ations in robust accuracy. Such previously unnoticed
sensitivity raised serious concerns in practice.

3. Sensitivity to the Gamma Mapping

Different factors could lead to distributional shifts
on image datasets, such as acquired under different

lighting conditions or preprocessed differently. Do they
lead to different levels of robustness? We answer this
question by testing on variants of CIFAR10 images un-
der different gamma mappings. Gamma mapping is
a simple element-wise operation that takes the original
image x, and output the gamma mapped image (") by
performing (") = z7. It is commonly used to adjust
the exposure of an images. Figure 1c shows variants of
the same image processed with different gamma values.

We perform similar experiments as in Section 2, with
results displayed in Figure 1f. Clean accuracies almost
remain the same across different gamma values. How-
ever, under PGD training, both accuracy and robust
accuracy varies largely under different gamma values.

These results should raise practitioners’ attention
on how to interpret robustness benchmark “values”.
For the same adversarial training setting, the robust-
ness measure might change drastically between image
datasets with different “exposures”. In other words, if
a training algorithm achieves good robustness on one
image dataset, it doesn’t necessarily achieve similar ro-
bustness on another semantically-identical but slightly
varied datasets. Therefore, the actual robustness could
be underestimated or overestimated significantly. This
raises the questions on whether we are evaluating im-
age classifier robustness in a reliable way, and how we
choose benchmark settings that can match the real ro-
bustness requirements in practice. We defer this im-
portant open question to future research.
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